$P(A \cup B) = P(A \cap B)$ if and only	y if the relation between
P(A) and $P(B)$ is	

Given that $P(A \cup B) = P(A \cap B)$ $\Rightarrow P(A) + P(B) - P(A \cap B) = P(A \cap B)$ $\Rightarrow [P(A) - P(A \cap B)] + [P(B) - P(A \cap B)] = 0$ But $P(A) - P(A \cap B), P(B) - P(A \cap B) \ge 0$ $[:: P(A \cap B) \le P(A), P(B)]$ $\Rightarrow P(A) - P(A \cap B) = 0 \text{ and } P(B) - P(A \cap B) = 0$ [:: Sum of two non-negative no's can be zero only when these no's are zeros] $\Rightarrow P(A) = P(B) = P(A \cap B)$ which is the required relationship.